
Traditional and Contemporary Climate-Responsive Architecture in Iran: Strategies for Reducing Building Energy Consumption

Naghmeh Ranjkesh

Islamic Azad University, Rasht Branch

Abstract

Climate-responsive architecture is a sustainable approach that plays a crucial role in reducing energy consumption and improving thermal comfort by adapting buildings to local environmental conditions and employing vernacular design solutions. In Iran, traditional principles—such as windcatchers, verandas, central courtyards, optimal building orientation, and the use of local materials—enable natural regulation of temperature and airflow without reliance on mechanical systems. Windcatchers direct cool air into interior spaces, creating natural ventilation, while verandas and central courtyards, through proper shading and geometric design, enhance heat exchange and airflow. High thermal capacity materials further reduce indoor temperature fluctuations, maintaining thermal stability throughout the year.

International studies indicate that passive strategies, including shading, building orientation, window design, and material selection, significantly reduce thermal loads and minimize the need for mechanical cooling. Combining these strategies with traditional Iranian elements provides a practical solution for energy reduction and thermal comfort improvement. Integrating vernacular knowledge with global practices facilitates the design of energy-efficient, near-zero-energy, and sustainable buildings, enhancing environmental quality and occupant comfort while preserving cultural heritage.

This study adopts a review-analytical approach to examine climate-responsive architecture principles in Iran, comparing domestic case studies with international passive strategies in hot and arid climates.

Keywords: Climate-responsive architecture, Sustainable architecture, Windcatcher, Central courtyard, Passive strategies, Energy consumption.

1. Introduction

Sustainable and climate-responsive architecture has gained increasing attention globally and in Iran as an effective approach to reducing energy consumption and enhancing thermal comfort. Buildings in hot and arid climates often consume high amounts of energy due to thermal loads and extensive cooling requirements [1][2].

In Iran, climate-responsive architecture evolved through traditional elements such as windcatchers, verandas, central courtyards, and optimal building orientation, allowing natural regulation of indoor temperature and airflow without mechanical systems [3][4]. Domestic studies have shown that proper material selection, building envelope design, and window placement can significantly reduce heat transfer and energy consumption [5][6][7].

Analysis of microclimate and thermal comfort in historic houses, such as the Boroujerdi House and Kamali House, demonstrates that central courtyards and the combination of open and enclosed spaces improve natural thermal performance [8][9]. International research confirms that passive design strategies, including shading, building orientation, window design, and appropriate materials, are effective in hot and arid climates [2][10][11][12][13].

Successful examples include residential complexes in Riyadh, Saudi Arabia, and high-rise residential towers in Dubai, UAE, where integration of architectural geometry with windcatchers and verandas significantly reduced energy consumption [12][13][14].

Combining traditional Iranian principles with scientifically proven passive strategies provides a sustainable solution for designing energy-efficient buildings that reduce reliance on mechanical systems, enhance thermal comfort, and preserve cultural identity [3][4][5][6].

2. Methodology

This study employs a review-analytical and comparative approach. Traditional climate-responsive principles in Iranian architecture were collected through library research and analysis of historic residential case studies. International passive strategies in hot and arid climates were identified and compared with successful residential projects in Saudi Arabia and the UAE. Data analysis was conducted descriptively and qualitatively, examining the relationship between traditional elements and passive strategies to determine their combined potential for sustainable, low-energy architectural design.

3. Traditional Iranian Climate-Responsive Principles

Traditional Iranian architecture in hot and arid climates uses vernacular knowledge to naturally regulate indoor temperature and airflow without mechanical systems.

Windcatchers (Badgir): Direct air into interior spaces, creating natural ventilation and cooling. Height, orientation, and number of windcatchers optimize airflow and reduce indoor temperature [3][4].

Verandas (Iwan) and Central Courtyards: Provide shading and enhance heat exchange. Properly designed courtyards with high thermal capacity materials maintain occupant comfort throughout the year [7][8].

Local Materials: Adobe, brick, and stone reduce temperature fluctuations and improve thermal stability [6].

Building Envelope and Window Design: Strategic placement and sizing of openings maximize natural light and ventilation [5][6].

While highly effective, direct implementation of these strategies in contemporary architecture is constrained by urban density, plot limitations, and regulatory requirements. Therefore, reinterpretation of traditional elements—rather than direct replication—is necessary. Contemporary integration may involve double-layered envelopes, controlled openings, intelligent shading devices, and semi-open spaces [2][11].

4. Domestic Case Studies

Yazd Historic Houses: Windcatchers direct cool air to summer living areas, reducing energy consumption [3].

Kashan Central Courtyards: Microclimate and shading improve comfort in classrooms and public spaces [7][8].

Ahvaz Residential Buildings: Material selection and envelope design maintain indoor comfort and reduce dependency on mechanical cooling [6].

Dezful Houses: Exterior wall materials significantly influence indoor thermal comfort [4].

These cases illustrate that traditional climate-responsive elements enhance indoor temperature, environmental quality, and occupant behavior [3][8].

5. Global Passive Strategies in Hot and Arid Climates

International studies highlight the importance of passive design strategies. Shading, building orientation, window design, and high thermal capacity materials reduce thermal loads and minimize mechanical cooling requirements [2][10][11].

Successful examples include residential complexes in Riyadh and Dubai, where integration of architectural geometry with windcatchers and verandas significantly reduced energy consumption [12][13][14]. Effective passive strategies rely on holistic design, combining orientation, building form, material selection, and solar control [2][12].

6. Comparative Analysis of Traditional and Global Strategies

Table 1: Comparative Analysis of Traditional Iranian and Global Passive Strategies

Traditional Iranian Principle	Climatic Function	Global Passive Strategy	Equivalent Function
Windcatcher (Badgir)	Channels cool air, natural ventilation	Building orientation, passive ventilation systems	Improves airflow, reduces indoor temperature
Central Courtyard	Shading, heat exchange, natural ventilation	Courtyard / Atrium design	Reduces thermal load, improves thermal comfort
Veranda (Iwan)	Shading, reduces solar radiation	Shading devices, pergolas, external screen	Controls solar radiation, reduces summer heat
Local Materials (Adobe, Brick, Stone)	Stores/releases heat, reduces temperature fluctuations	High thermal capacity materials, thermal envelopes	Stabilizes indoor temperature, reduces energy consumption
Optimal Building Orientation	Maximizes wind and light use	Orientation for passive heating/cooling	Reduces energy use, improves thermal comfort

Source: Compiled by the author based on domestic and international studies.

Analysis: Traditional Iranian elements and global passive strategies are complementary. Their integration enables the design of energy-efficient, near-zero-energy buildings that retain cultural identity while maximizing thermal performance [3][4].

7. Conclusion

Traditional Iranian climate-responsive architecture—through windcatchers, verandas, central courtyards, optimal orientation, and local materials—effectively reduces energy consumption and enhances thermal comfort [3][4]. Domestic and international evidence shows that envelope design, window placement, and high thermal capacity materials reduce indoor temperature fluctuations and reliance on mechanical cooling [5][6][7].

International studies confirm that passive strategies in hot and arid climates—including shading, building orientation, window design, and material selection—significantly control building energy loads [2][10][11][12][13]. Examples such as Riyadh residential complexes and Dubai towers demonstrate that integrating architectural geometry with windcatchers and verandas reduces energy consumption [12][13][14].

The comparative analysis confirms that combining traditional Iranian elements with global passive strategies provides a sustainable, practical, and implementable approach for contemporary Iranian architecture, reducing energy use, enhancing occupant comfort, and preserving cultural identity [3][4][5][6].

References

- 1.Du, X. (2019). Passive cooling techniques. *A+BE | Architecture and the Built Environment*, 9(10), 1–100. <https://doi.org/10.7480/abe.19.10.4104>
- 2.Al-Tamimi, N. (2022). Passive design strategies for energy-efficient buildings in hot arid climates. *Frontiers in Built Environment*, 7, Article 805603. <https://doi.org/10.3389/fbuil.2021.805603>
- 3.Pourahmadi, M., & Ayatollahi, S. H. (2011). Performance strategies of different windcatchers in Yazd based on spatial relationship with summer-use spaces. *Journal of City and Vernacular Architecture*, 1(1), 7–18.
- 4.Kouros Momeni, M., & Tanvarsaz, H. (2023). Comparison of external wall materials on thermal comfort of residents and selection of optimal materials in hot and dry climates: Case study of Dezful city. *Journal of City and Vernacular Architecture*.
- 5.Nadi, M. R., Malekhosseini, A., Salehi, H., & Fathi Najafabadi, A. (2014). Providing thermal comfort in architectural spaces in hot and dry climates of Iran using ground thermal behavior: Case study of traditional houses. *New Perspectives in Human Geography*, Summer Issue.
- 6.Razavi, S. M., Moghaddas, N., & Memar Dezfuli, S. (2020). Investigation of the impact of building materials on thermal comfort in hot and dry climates (Ahvaz city). *Iran Scientific Network (ISNAC)*.
- 7.Zomordian, Z., Aminian, S., & Tahbaz, M. (2017). Assessment of thermal comfort in classrooms in hot and dry climates: Field study of a girls' elementary school in Kashan. *Fine Arts – Architecture and Urban Planning*, Winter Issue.
- 8.Akbari, H., & Kermani, Y. (2022). Analysis of microclimate and thermal comfort of central courtyards in historical houses in hot and dry climates: Case study of Boroujerdi House, Kashan.

In Proceedings of the 2nd International and 7th National Conference on Architecture and Sustainable City.

9. Hosseini, E. S., & Baharnejad, M. (2021). Thermal performance analysis of traditional houses in hot and dry climates of Iran. *Journal of Architecture and Sustainable Urban Development*.
10. Benali, A., et al. (2019). Assessing the thermal performance and energy efficiency of residential buildings in hot arid climates. *International Journal of Energy and Environmental Engineering*.
11. Beattie, M., et al. (2023). Passive buildings: A state-of-the-art review. *Journal of Infrastructure Preservation and Resilience*, 4, Article 3. <https://doi.org/10.1186/s43065-022-00068-z>
12. El-Sherbiny, H., & El-Din, D. (2024). Energy-efficient passive cooling design in hot and arid climates. *Aswan University Journal of Sciences and Technology*, 4(1), 80–95. <https://doi.org/10.21608/aujst.2023.253258.1076>
13. El-Shaer, I., et al. (2023). Passive design strategies in arid desert climates. *Buildings*, 15(2731). <https://www.mdpi.com/2075-5309/15/15/2731>
14. Hassan, et al. (2019). Passive strategies in Middle Eastern residential buildings. *Energy and Buildings*.